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We derive boundary conditions for the electrically induced spin accumulation in a finite, disordered two-
dimensional semiconductor channel. While for dc electric fields these boundary conditions select spatially
constant spin profiles equivalent to a vanishing spin-Hall effect, we show that an in-plane ac electric field
results in a nonzero ac spin-Hall effect, i.e., it generates a spatially nonuniform out-of-plane polarization even
for linear intrinsic spin-orbit interactions. Analyzing different geometries in �001�- and �110�-grown quantum
wells, we find that although this out-of-plane polarization is typically confined to within a few spin-orbit
lengths from the channel edges, it is also possible to generate spatially oscillating spin profiles which extend
over the whole channel. The latter is due to the excitation of a driven spin-helix mode in the transverse
direction of the channel. We show that while finite frequencies suppress this mode, it can be amplified by a
magnetic field tuned to resonance with the frequency of the electric field. In this case, finite-size effects at
equal strengths of Rashba and Dresselhaus SOI lead to an enhancement of the magnitude of this helix mode.
We comment on the relation between spin currents and boundary conditions.
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I. INTRODUCTION

Electron systems with spin-orbit interaction show a vari-
ety of spin-electric effects arising from the coupling between
�orbital� charge and spin degrees of freedom. The most
prominent examples are the spin-Hall effect1–4 and current-
induced spin polarization,5–7 both of which have received
substantial interest due to their potential to generate and con-
trol spin polarization with electric fields. This type of elec-
trical control is a prerequisite for integrating spin effects into
standard lithographic semiconductor structures and, ulti-
mately, utilizing the spin degree of freedom as a carrier of
information.8

The spin-Hall effect �SHE� manifests itself
experimentally2,3,9 as current-induced spin polarization
�CISP� at the edges of a Hall-bar �in the absence of a mag-
netic field�. Initial theoretical studies of the SHE �Ref. 10� in
two-dimensional �2D� electron systems have focused on lin-
ear intrinsic Rashba and/or Dresselhaus spin-orbit interaction
�SOI� and interpreted this boundary spin accumulation in
terms of a spin current1 �defined as a symmetrized product of
spin and current densities� flowing transverse to the applied
electric field. However, these arguments have been plagued
by ambiguities, such as equilibrium spin currents11 and the
absence of spin conservation12,13 in systems with intrinsic
SOI. Explicit diagrammatic calculations13–15 for disordered
systems and a more general, nonperturbative argument12,13,16

show that the spin current is absent in systems with standard
linear-in-momentum SOI.17

A more straightforward approach is to calculate the quan-
tity directly measured in experiments: the spatially and time-
resolved spin density.18–20 In weakly disordered systems with
EF��−1 ,�SO �where EF is the Fermi energy, � is the momen-
tum relaxation time, and �SO is the spin-orbit splitting� the
spin density is described by spin-diffusion equations derived
in Keldysh21–23 or density-matrix approaches.20,24,25 These
equations have been used to study various effects, such as

the response to an electromagnetic wave,26 spin currents,21

spin relaxation,27,28 boundary spin accumulation for
dc18–20,29,30 and abruptly switched31,32 electric fields, and
more general interface problems.23,25

A significant difference between charge and spin diffu-
sion, as described by these equations, is the existence of
spatially oscillating spin-density modes. For instance, a gra-
dient of the out-of-plane spin density acts as a torque on the
in-plane spin and vice versa, leading to a periodic spatial
modulation of both in- and out-of-plane spin densities with a
period given by the spin-orbit length �SO. General solutions
of the spin-diffusion equations are damped spatial spin-
density oscillations with a period given by the spin-orbit re-
laxation length �SO. An example of such periodic modes in
diffusive systems was first described in Ref. 33 �see, in par-
ticular, Eq. �7� there� for the case of equal strengths of the
Rashba and linear Dresselhaus SOI. For this particular case
and in the absence of the cubic SOI, these modes are long
lived and static and are thus referred to as persistent spin
helix.22 Modes of this type have recently been observed.34

However, when analyzing these equations for a specific
geometry, e.g., in a narrow channel for the case of the SHE,
the weight of these oscillatory modes in the solution is de-
termined by boundary conditions �BCs�. For instance, as-
suming vanishing polarization at the boundary one obtains
an oscillatory behavior of the spin density,29 resembling the
spin profile measured in Ref. 3. On the other hand, for a von
Neumann boundary condition �vanishing normal gradient of
the polarization�, the spin profile is spatially uniform. Thus,
the existence of the SHE depends crucially on the BCs. This
circumstance motivated a number of studies where BCs for
systems with SOI were derived microscopically, both in the
diffusive18,20,23,29,30 and ballistic35 regimes.

It has been shown23,30 that BCs �for hard-wall spin-
conserving boundaries� in disordered36 systems with linear
SOI and for dc electric fields require the spin density to be
equal to its value in the bulk, i.e., far away from the bound-
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ary and, thus, lead to a spatially uniform spin profile. This
null result is consistent with zero spin currents.13–16,21 The
experimentally observed dc spin accumulation3 in 2D elec-
tron gases �2DEGs� thus requires an explanation accounting
for both extrinsic37,38 and �cubic19� intrinsic effects. That a
spin current is finite at finite frequencies and for linear
SOIs,21,39,40 however, hints at the presence of boundary spin
accumulation in ac solutions. In this paper, we focus on the
intrinsic mechanism and show that a dynamic SHE, i.e.,
boundary spin polarization induced by an ac voltage, is
present even in a minimal intrinsic model.

The dynamic SHE arises due to the excitation of spatially
nonuniform spin-diffusion modes. In the Hall-bar geometry,
these modes are excited by a spatially uniform ac electric
field and lead to accumulation and spatial oscillations of the
spin density close to the boundaries. Analyzing these modes
as a function of SOI strengths and in the presence of an
external, in-plane magnetic field, we find a spin-diffusion
mode which is a finite-frequency analog of the persistent
spin helix.22,28,33,34 The relaxation length of this mode—
while finite for generic linear SOIs—becomes infinite when
the Rashba and Dresselhaus SOI strengths are equal and
when the magnetic field is tuned to resonance with the fre-
quency of the electric field. This particularly robust mode,
originating from electric-dipole-induced spin resonance
�EDSR�,39–47 gives rise to a spatially oscillating spin profile
which extends infinitely far away from the Hall-bar bound-
ary. This driven spin helix has the same spatial oscillation
period as the persistent spin helix22,33,34 but, whereas the lat-
ter is static, the former oscillates in time at the frequency of
the applied bias. The prediction of a driven spin helix is one
of the main results of this paper.

Using a linear-response approach, we solve the problem
of a hard-wall boundary in a disordered 2D electron gas in
the presence of an ac electric field. The derivation of the BCs
is similar to the one in Refs. 20 and 30. We find that while
the bulk polarization is reduced at finite frequencies, the BCs
require the polarization at the boundary to have a larger
value. The spin polarization is, thus, no longer spatially uni-
form: there is a spin accumulation at the boundary and spa-
tial oscillations decaying toward the bulk of the sample. The
amplitude of this spatial oscillations at frequency � is pro-
portional to � /�, where � is the Dyakonov-Perel spin-
relaxation rate. Since typically �	�−1, where � is the trans-
port time, the dynamic SHE becomes pronounced even for
frequencies ��	1. Analyzing different geometries and
SOIs, we find that it is possible to excite a predominantly
oscillatory mode for equal strength of the Rashba and
Dresselhaus SOI—a driven spin helix described above.
Finally, we comment on the proper definition of a spin cur-
rent in terms of an SU�2�-covariant derivative and show that
it naturally follows from the commutator �and not anticom-
mutator� between spin density and velocity operator. This
spin current is shown to be consistent with both the diffusion
equation and the microscopically derived boundary condi-
tions.

The paper is organized as follows. In Sec. II, we introduce
our model and formulate the linear-response formalism for
SHE. In Sec. III, we sketch the derivation of the integral
equation for the spin density, which is then used to derive the

diffusion equation and its boundary conditions. �A more de-
tailed derivation is deferred to Appendix A.� In Sec. IV, we
derive boundary conditions in the presence of an ac electric
field and comment on the relation between spin currents and
these boundary conditions in Sec. V. In Sec. VI we calculate
the spatially resolved spin profiles at finite frequencies in
various geometries in �001�- and �110�-grown quantum
wells. Generation of a driven spin helix under the conditions
of EDSR is discussed in Sec. VII.

II. PRELIMINARIES

We consider a disordered 2DEG confined to a quantum
well �QW� channel of width L �see Fig. 1� with noninteract-
ing electrons of mass m and charge e. The system is de-
scribed by the Hamiltonian

H =
p2

2m
+ ��p� · � + b0 · � + V . �1�

Here, p= �p1 , p2 ,0� is the in-plane momentum, ��p�i
=
ijpj is a linear, vector-valued function of p describing
spin-orbit interaction, 2b0=g�B�B1 ,B2 ,0� is a magnetic field
�equal in magnitude to the Zeeman energy� applied parallel
to the 2DEG, and �= ��1 ,�2 ,�3� are the Pauli matrices �and
�0=1�. The disorder potential V due to static short-ranged
impurities randomly distributed over the channel is charac-
terized by the mean free path l=�pF /m, where � is the scat-
tering time and pF is the Fermi momentum.

We calculate the impurity-averaged, spatially dependent

spin density Ŝi�r�=�i
�r− x̂� due to in-plane ac electric field
E���=E0
��−�0�. As it will be shown below, the overall
magnitude of S is determined by the bulk spin polarization
due to CISP far away from the boundary. We therefore
briefly discuss CISP in different geometries. We define the
nominal polarization

FIG. 1. Left: conducting channel infinite in the ex2
direction and

of width L in the ex1
direction. ac electric field E��� �ex2

induces
boundary spin accumulation. An external magnetic field b0, applied
parallel to E, gives rise to EDSR �see Sec. VII�. Right, �a�: a stan-
dard �001�-grown quantum well with the �110� crystal axis taken
along the x2 direction. The bulk polarization ��eE���ex1

��+��
points along ex1

�cf. Eqs. �2� and �3��. Right, �b�: a �110�-grown

quantum well with E � �1̄10� along ex2
. The internal field �see Eq.

�4�� ��eE�� has both in-plane �due to the Rashba SOI� and out-of-
plane �due to the Dresselhaus SOI� components.
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Sb � − �2�„eE����… , �2�

�with �=m /2� being the density of states per spin� which at
zero frequency ��0=0� coincides with the bulk polarization.6

In this case, Sb is simply a paramagnetic spin response to an
effective magnetic field ��eE0��. The latter is the internal
field due to the electrically induced drift momentum eE� and
SOI.

Both the magnitude and direction of Sb depend on the SOI
mechanism. We consider two cases �see Fig. 1�: the “stan-
dard” �001�- and �110�-grown QW. The Rashba SOI �with
strength �� due to an asymmetry in the confinement potential
has the same form in both cases and is assumed to be tun-
able. The Dresselhaus induced fields �D,�001� and �D,�110�
are in-plane and out-of-plane in the �001� and �110�-grown
QWs, respectively. For convenience, we define ��=2�pF�,
��=2�pF� as the ratios of the mean free path and spin pre-
cession length due the Rashba and Dresselhaus SOIs, respec-
tively. The vector couplings of the SOIs are described by


�001� = � 0 � + � 0

− �� − �� 0 0

0 0 0
� �3�

for case �a� in Fig. 1 and


�110� = � 0 � 0

− � 0 0

0 � 0
� �4�

for case �b�. In case �a�, the bulk polarization Sb�−ex1
��+�� points along the �negative� x1 axis. When the Rashba
and Dresselhaus SOIs are of comparable strength, i.e., �
	+� �or �	−��, constructive �destructive� interference be-
tween the two SOI mechanisms occurs.33 In this case, one
spin component �along x1 �x2�� becomes conserved. A similar
situation occurs in the �110�-grown QW, where the out-of-
plane spin is conserved if the Rashba SOI is relatively small.
Here the bulk polarization points out of plane and is, thus,
easier accessible in optical measurements.2–4

The induced spin density S��r� is described by coupled
spin-diffusion equations19,21,24 which can be derived in the
Keldysh21–23 or density-matrix formalisms.20,24,25 As a start-
ing point for the derivation of the boundary conditions, we
present here an alternative derivation based on a diagram-
matic linear-response approach. The detailed derivation is
deferred to Appendix A. We obtain an integral equation for
the spin density

Si�r� − Sb
i = i��Sb

i +
 d2xXij�r,x��Sj�x� − Sb
j � �5�

valid in the regime 1 /EF�	1, where

X���r,x� =
1

2m�
tr���GEF+�

R �r,x���GEF

A �x,r�� . �6�

Here, EF is the Fermi energy, tr�¯ � denotes the trace over

spin s, v̂ j =
p̂j

m +
kj�
k is the velocity operator containing a

spin-dependent term, and GE
R/A the impurity-averaged,

retarded/advanced Green’s functions at energy E. Note that

for �=0 the integral Eq. �5� depends only on the combina-
tion S−Sb so that the spatially uniform solution S=Sb is
immediate. The uniform spin profile is equivalent to the ab-
sence of the SHE, whose presence would cause a spatial
modulation of S at the boundary.

III. DIFFUSION EQUATION

Far from the sample boundary, the impurity-averaged
Green’s functions and, hence, the kernel X���r ,x��
	e−
r−x�
/l in Eq. �5� decay on the scale of the mean free path
l, which is the shortest length scale of the diffusion problem.
The behavior of S on scales larger than l can, thus, be found
by expanding: S�x�	S�r�+ �x−r�i�ri

S�r�+ 1
2 �x−r�k

�x−r�l�rk
�rl

S�r�. In this way, one obtains the coupled spin-
diffusion equation

�− i� + � − D�r��S�r� − Sb� − 2�b − pF��l�r��

� �S�r� − Sb� = i�Sb, �7�

where D=vFl /2 is the diffusion constant and �ij

= �tr��

T��
ij − �

T�ij�2pF
2� is the spin-relaxation tensor.

We now apply Eq. �7� to the two specific geometries in
Figs. 1�a� and 1�b�. Assuming translational invariance along
ex2

, we find for the �001�-grown QW with E � �110� �ex2

�− i� − D�r1

2 + �−��S1 − Sb� + C−�r1
S3 = i�Sb, �8�

�− i� − D�r1

2 + �+�S2 = 0, �9�

�− i� − D�r1

2 + �+ + �−�S3 − C−�r1
S1 = 0, �10�

where ��=2pF
2������2, C�=2pFl�����, �L=2b0, and

Sb=−2�eE���+��.
In case �b� of a �110�-grown QW with b0 ,E � �1̄10� �ex2

we
find

�− D�r1

2 − i� + �1� + �2���S
1 − Sb

1�

− �C2��r1
+ �L + ��1��2���S

3 − Sb
3� = i�Sb

1, �11�

�− D�r1

2 − i� + �1� + �2��S
2 = 0, �12�

�− D�r1

2 − i� + 2�2���S
3 − Sb

3� + �C2��r1
+ �L − ��1�2��S1 − Sb

1�

= i�Sb
3, �13�

where Sb=−2�eE��� ,0 ,��, �1�=2pF
2��2, �2�=2pF

2��2, C1�
= pFl�, C2�= pFl�, and �L=2b0. Note that in this geometry
the Dresselhaus SOI adds to Sb, whereas for E � �001� the
electric field does not couple to the Dresselhaus term.48

IV. BOUNDARY CONDITIONS

The diffusion equation �Eq. �7�� has to be supplemented
with boundary conditions. These match the bulk solutions of
the diffusion Eq. �7� with the solution of the integral equa-
tion �Eq. �5�� in the region 1 / pF	x1	 l close to the bound-
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ary. Here, we follow the approach used in Refs. 20 and 30.
We choose x1=0 as the boundary and construct the impurity-
averaged Green’s functions GR/A�x ,x�� which satisfy the

Dyson equation �x
���− Ĥ0− ĤSO− �̂�Ĝ�
x��=
�x−x�� with

H0 being the Hamiltonian in the absence of SOI and �̂ being
the self-energy due to impurity scattering.49,50 We, moreover,
impose the hard-wall, spin-conserving boundary conditions
G�x ,x�� 
x1,x1�=0=0 for either argument at the boundary.

To zeroth order in the SOI, these conditions are satisfied
by image constructions G0

R/A=Gb,0
R/A−Gb,0

�R/A, where Gb,0
R/A is the

impurity-averaged Green’s function in the bulk and
Gb

�R/A�x ,x��=Gb
R/A(x , �−x1� ,x2��) is the Green’s function mirror

reflected at the boundary. Neglecting Friedel oscillations of
the self-energy at the boundary, which fall off as 1 /�pFx1,
the Green’s functions GR/A constructed in this way satisfy the
Dyson equation to leading order in 1 /EF�.

To first order in HSO the Green’s functions are found as

Ĝ1= Ĝ0ĤSOĜ0. By construction, G�x ,x��= �G0+G1��x ,x��
satisfies the boundary conditions and the Schrödinger equa-
tion to linear order in the spin-orbit interaction. Performing a
Fourier transform of the Green’s function G�x ,x��
=�dp2G�x1 ,x1� 
 p2�eip2�x2−x2�� / �2�� along the boundary, we
find

G0
R/A�x1,x1�
p2� =

�im

pE
� �e�ipE

�
x1−x1�
 − e�ipE
��x1+x1��� , �14�

where pE
�=�2m�E� i /2�− p2

2 /2m� with p2 being the mo-
mentum along the channel. To first order in HSO, we find

G1
R/A�x1,x1�
p2� =

�m2
k1�k

pE
� �x1 − x1��

� �e�ipE
�
x1−x1�
 − e�ipE

��x1+x1��� + ¯ ,

�15�

where the dots stand for additional terms that do not contrib-
ute to the integrals below since they are odd in the longitu-
dinal momentum p2.

We are now in a position to derive boundary conditions
using the Green’s functions from Eqs. �14� and �15�. We take
the limit r→0 of Eq. �5� and expand Si�x�	Si�r�
+ �xj −rj�

�
�rj

Si�r� in the integrand. This yields

0 = i��Sb + �B − 1��S�0� − Sb� + Cj
�

�rj
S�0� , �16�

where the coefficients

B�� = 

x1��0

dx1�dx2�X
���x,x��
x→0 �17�

Cj
�� = 


x1��0
dx1�dx2�X

���x,x���xj� − xj�
x→0 �18�

are obtained from the spin-spin correlation function X�� in
Eq. �6� evaluated with the Green’s functions satisfying the
boundary conditions. In symbolic notations, X�Gb,0

R Gb,0
A

+Gb,0
�R Gb,0

�A −Gb,0
R Gb,0

A −Gb,0
�R Gb,0

A . Note that for �=0 the

diffusion equation �Eq. �7�� and the boundary conditions
�Eq. �16�� depend only on the combination S−Sb, so that the
spatially constant solution S=Sb is immediate. In particular,
there is no spin accumulation close to the boundary in that
case in agreement with the literature on the linear intrinsic
spin-Hall effect.13–15,19

When calculating the spin-spin correlation function X��

one encounters mixed terms of the form GG�, which oscil-
late as a function of x1 with a period of 1 / pF. To determine S
on length scales larger than l, we neglect these oscillations.
This way, we find the BCs

l�n̂Si = − 2pF�
�n̂�m�mij�Sj − Sb
j � , �19�

where n̂ is a unit vector normal to the boundary and where
we have neglected terms proportional to ��	1.

V. SPIN CURRENT

In this section, we show that a definition of the spin cur-
rent in terms of an SU�2�-covariant derivative is consistent
with both the boundary conditions and the diffusion equa-
tion. This definition is equivalent to introducing the spin cur-
rent as the commutator—in contrast to the conventionally
used anticommutator—of spin and velocity. To see this, we
define a Hermitian spin-current operator as follows:

Ĵi
��Ŝ� = − DiŜ

��r�

= − i�mv̂SO,i, Ŝ
��r��

=
�

�ri
Ŝ��r� + 2m
ki�k���Ŝ

���r� , �20�

where we have introduced the covariant derivative51 Di·
=� /�x̂i·− i�A , ·� with the nonabelian gauge potential

Ai=−m
ki�
k and Ŝ��r�=��
�r− x̂� is the spin-density op-

erator. �Note that Ĵi
� differs by a factor of mass m from the

conventionally defined product of velocity and spin.� From

Eq. �20� we obtain a spin current J by replacing Ŝ by S�r�
−Sb in the second line of Eq. �20�, i.e.,

Ji
��r� = − Di

����S���r� − Sb
��� , �21�

where −Di
���=
���� /�ri+2m
ki�k���. The BCs in Eq. �19�

are then equivalent to the requirement that the normal com-
ponent of J vanishes at the boundary, i.e., n̂ ·J��r� 
r1→0

=0 , �=1,2 ,3.
Using the definition, Eq. �21�, one finds that both the dif-

fusion equation �for this see also Ref. 38�, Eq. �7�, and the
boundary conditions, Eq. �19�, can be written in terms of the
covariant derivative as

− i�S� + DDi
���Ji

�� = 0 �22�

n̂ · J�
r1→0 = 0. �23�

Thus, spin diffusion with linear SOI has a �formal� analogy
to charge diffusion. In charge diffusion, both the diffusion
equation �̇=D� j for the charge density � and the BCs n̂ · j
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=0 contain the same charge current j. The current j=�� is
given in terms of the spatial derivative of the density. Analo-
gously, the spin current is given as the SU�2�-covariant de-
rivative of S�.

In Ref. 30, in an attempt to identify a spin current directly
from the diffusion equation, Eq. �7� was rewritten �for b0
=0� in the form

− i�S� + ���S − Sb��� − D � · J̃� = 0, �24�

where the “spin current”

J̃i
� =

�

�ri
Ŝ��r� − 4m
ki�k���Ŝ���r� , �25�

however, differs from Ji
� by a relative factor of 2. This dis-

crepancy is resolved when the definitions Eqs. �20� and �21�
are used making the introduction of two different spin cur-

rents J and J̃ unnecessary.

VI. SOLUTIONS OF THE DIFFUSION EQUATION

First, we obtain a solution of Eq. �7� in an infinite sample.
In this case the bulk Green’s functions Gb

R/A�x ,x��=Gb
R/A

�x−x�� are translationally invariant and, thus, X��

��d2x�X���r ,x�� becomes independent of r. The spatially
uniform ansatz

S� = �� − i��−1�Sb �26�

solves both the integral equation �Eq. �5�� and the diffusion
equation �Eq. �7��. The same result for the polarization at
finite � was found in Ref. 52 using a kinetic equation and in
Refs. 39 and 40 in the linear-response formalism. Remark-
ably, S� is not simply given by the ac internal field ��pd�
corresponding to ac drift momentum pd=eE���� / �1− i���,
but depends on the spin-relaxation rate. Therefore, the devia-
tion of S� from Sb becomes appreciable already at a rela-
tively small frequency ���DP rather than at a much higher
frequency ���−1, which marks the dispersion of pd. Note
also that there is no dc bulk polarization at 
�
= 
�
, if the
limit of �→ �� is taken before the limit of �→0 �see Ref.
53 for a discussion of this point�.

We now estimate the magnitude of Sb. We choose param-
eters similar to the �low-mobility� sample employed in Ref. 3
except for a higher mobility and a lower sheet density. With
�=1.0�10−12 eV m, sheet density n2=1.0�1015 m−2, and
transport mean free path �=5�10−13 s and choosing E
=5 mV /�m, we obtain the bulk polarization due to Rashba
SOI Sb,��2�eE��=1.1 �m−2, or about 1 spin per square
micron �Sb /n2=0.1%�. The magnitude of S� and, as we will
see below, the magnitude of the spatially nonuniform terms
in the solution are proportional to Sb. Depending on the ge-
ometry and on whether the Rashba and Dresselhaus SOIs
add constructively or destructively, the overall amplitude of
the spin oscillations and edge spin accumulation is modified.
In case �a� in Fig. 1, one finds Sb=Sb,��1+��001� /�� while in
case �b� Sb=Sb,��1,0 ,��110� /��, where ��001� and ��110� are
the Dresselhaus SOI strengths in the �001�- and �110�-grown
QW, respectively.

We now focus on the position-dependent spin profile in a
semiconductor channel of finite width. As before, we assume

translational invariance along the channel so that the diffu-
sion Eq. �7� becomes an inhomogeneous ordinary differential
equation

L��r1
��S�r1� − Sb� = i��Sb �27�

in the transverse coordinate r1, where the differential opera-
tor L��r1

� is defined by Eqs. �7� and �27�. The solution

S = S� + cksk�r� �28�

consists of the uniform part S�, given by Eq. �26� �inhomo-
geneous solution�, and a linear combination of k
=1,2 , . . . ,6 eigenmodes sk=sk,0e�kr1, satisfying L��r�s�r�=0.
The wave numbers �1,. . .,6 �in arbitrary order� in case �a� are
given by54

�1,2 = � l−1�2���+ − i�� ,

�3,4,�5,6� =
+ �− �1

2D
�2D��+ − 2i�� − C−

2

+ �− � � 2�− 2D��+ − 2i��C−
2 + D2�+

2 �1/2
.

�29�

Some of �k are shown in Fig. 2 as functions of � /�. The real
and imaginary parts of the wave number are responsible for
exponentially growing �decaying� and oscillatory parts of the
mode, respectively. The coefficients ck are determined by the
boundary conditions in the form Mc=−��B−1��S�−Sb� ,
−�B−1��S�−Sb��, where M is a 6�6 matrix obtained by
inserting the general solution into Eq. �16� �see also Eq. �B3�
in Appendix B�. The coefficients ck determine the magnitude
of the nonuniform part of S, i.e., if all ck are zero the solution
is spatially uniform. Although explicit expressions for c are
too lengthy to be displayed here, the scaling of c with � can
be found on general grounds. Indeed, all the entries of the
matrix M−1 diag��B−1� ,−�B−1�� are of order 1. The order of
magnitude of ck is thus given by 
S�−Sb
	�� /��
Sb
, where
the latter holds for ���. The nonuniform part of S �propor-
tional to the c’s�, thus, scales linearly with � for �	� and

−0.2

0

0.2

0.4

lθlθ

−2 −1 0 1 2 3
α/βα/β

lReθ5

lReθ5(EDSR)
lImθ5

lReθ6

lImθ6

FIG. 2. �Color online� Characteristic wave numbers � of the
homogeneous solutions s5�r1�=s5,0e�5r1 and s6=s6�r1�=s6,0e�6r1 of
Eq. �7� as a function of � /� for ��=10−3 and ��=0.1 in a �001�-
grown quantum well. For �=−� �indicated by arrow�, the wave
numbers have small real parts 
Re �5
	
Re�−2i��
	1, which im-
plies a nearly undamped oscillatory mode. Under EDSR conditions,
Re �5 vanishes identically at �+�=0 �cf. Eq. �32��. The presence of
modes with almost imaginary wave numbers leads to an oscillating
spin profile, as shown in Fig. 3.
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becomes appreciable at the frequency scale ���	�−1.
A solution for S in a �001�-grown QW �Fig. 1�a�� is

shown in Fig. 3. The electric field E is along the �110� axis
and the strengths of the Rashba and Dresselhaus SOIs are
chosen as �	−�, so that the wave numbers �cf. Fig. 2� are
almost imaginary. In this case, oscillations of the out-of-
plane spin density S3 extend almost over the entire channel.
Simultaneously with � approaching −�, however, the inter-
nal field ��eE����+� and, thus, the overall amplitude Sb
of the spin density becomes small. In other words, suppres-
sion of the damping rate Re �i� 
�+�
 close to the special
point �=−� competes with a suppression of the overall am-
plitude, so that a purely oscillatory mode cannot be excited
in this geometry.

Figure 4 depicts the polarization profile in a wide �110�-
grown QW as shown in Fig. 1�b�, where the bulk polariza-

tion �due to the Dresselhaus SOI� is out of plane. For a weak
Rashba SOI, the wave numbers of the characteristic modes
are almost real, i.e., the modes are strongly damped. As a
result, the polarization close to the boundary is substantially
larger than the bulk value given by Eq. �26�.

VII. EDSR AND DRIVEN SPIN HELIX

We now focus on EDSR �Refs. 39–47� in the finite Hall
bar geometry. We calculate the spin polarization S due to a
simultaneous effect of ac electric field and dc magnetic field
b0, both along the channel. The directions of the fields are
chosen in such a way so that the internal field �(eE����)
and b0 are perpendicular.55 This geometry is suitable for an
observation of electrically driven Rabi oscillations of the
spin polarization between the directions along and opposite
to b0.39,40,42

We focus on case �a� in Fig. 1. The magnetic field b0 leads
to an equilibrium polarization �Pauli paramagnetism� Sb0
� x̂2�L=2b0 in the longitudinal direction of the channel. In
addition, the polarization in the bulk of the sample �trans-
verse to b0� is modified. In the geometry of Fig. 1�a� with
b0 �ex2

, we find for the bulk polarization

S� = ���L
2 + �−��+ + �− − i���

0

− i��L
�

�
Sb

�L
2 − �2 − i���+ + 2�−� + �−

2 + �+�−

, �30�

where ��=2pF
2������2. In the absence of the magnetic

field, i.e., for �L=0, Eq. �30� reduces to Eq. �26�. Addition-
ally, the characteristic modes change due to b0. The wave
numbers � are determined by the requirement of vanishing
eigenvalues

1

2
�+ + �− − D�2 − i� �

1

2
��+

2 − 4��L − �C−�2 = 0 �31�

of the differential operator L��� defined by Eqs. �7� and �27�.
We focus on the case of �	−�. Expanding to first order

in �+ / ��L−�C−�	1, one finds

�1,2 = � l−1�2���+ − i�� ,

�3,4 =
iC− � �2�D��+ − 2i�� + �L��

2D
,

�5,6 =
− iC− � �2�D��+ − 2i�� − �L��

2D
. �32�

At resonance, i.e., for �L=�, the wave numbers �5,6 in Eq.
�32� become purely imaginary because �+=0 for �=−�. The
modes s5,6 are thus completely undamped oscillations of the
spin density with wavelength �SO

− =1 /2m��−�� �cf. Fig. 2�.
Note that in the considered case of �=−� the Hamiltonian
commutes with the longitudinal spin ��H ,�2�=0�, i.e., the
U�1� symmetry described in Ref. 33 remains intact, however,
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FIG. 3. �Color online� Real �solid line� and imaginary parts
�dashed line� of the out-of-plane spin density S3�x� /Sb �solution of
Eqs. �8�–�10� and �19�� in the standard QW �Fig. 1�a�� are shown
for ��=10−4, ��=0.1, ��=−0.095, and L=500l. As Rashba and
Dresselhaus SOI interfere destructively for this case, the bulk po-
larization is much smaller than the value discussed in Sec. VI: all
other parameters being equal, Sb=0.005 �m−2 instead of
1.1 �m−2. Inset: in-plane polarization S1�x� �along the internal field
��eE��� in the same situation.
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the SU�2� symmetry used in Ref. 22 to demonstrate the ex-
istence of the persistent spin helix is broken in the presence
of b0.

Figure 5 shows a profile of the spin polarization under
EDSR conditions. At resonance ��L= ���, the overall am-
plitude of the out-of-plane polarization is enhanced. This en-
hancement becomes particularly strong for �+	0 occurring
at �=−�.

Solving the diffusion equation �Eq. �7�� to first order in �+
for the case �	−�, �	+�L, we obtain the following ex-
pression for the spin density close to resonance ��	+�L�:

S�r1� 	 S� +
�Sb

1 − S�
1 − iS�

3 ���� − ���
sinh�LR/l�R � i

0

1
�

� �e−ir1/�SO
−

cosh�R�L − r1�/l�

− ei�L−r1�/�SO
−

cosh�Rr1/l�� , �33�

where R=���+−2i��−�L��. Equation �33� describes a spin-
density wave along the transverse direction of the Hall bar
with wavelength �SO

− and an amplitude proportional to
1 /sinh�LR / l�R. We discuss this result in more detail below.
Inserting Eq. �30� for S� into Eq. �33�, setting �=�L, and
expanding the hyperbolic functions in Eq. �33� for a narrow
channel with width L	�SO

+ =1 /2m��+��, one obtains the
dominant � dependence of S around the �	−� point as

S3�r1� 	 K
� + �

��� + ���2 + 2��res � e−ir1/�SO
−

�eiL/�SO
−

− 1� ,

�34�

where K= �−i� /�−��−2�eE�����−���l /L depends only on
the combination �−�. Here, we introduced a phenomeno-
logical linewidth �res=�y

res+2�x
res+O�����2� to model the

regularization of the amplitude of S3 at �+�=0, which for
�res=0 would diverge as 1 / ��+��. For �+�=0, the relax-
ation mechanisms due to linear intrinsic SOIs, which are
dominant for generic �� ��, are ineffective, and finite
spin-relaxation rates �x

res and �y
res of the x1 and x2 spin com-

ponents, respectively, are due to an extrinsic or cubic
Dresselhaus SOI.

Equation �34� describes a spin-density wave S3�r1� at fre-

quency � with a spatial profile of the form e−ir1/�SO
−

. The real
and imaginary parts of S3 have stationary nodes separated by
the shortest of the two SO lengths, i.e., �SO

− . In addition, the
spin profile is subject to a quantization condition: S is pro-

portional to a factor 1−eiL/�SO
−

, which vanishes for L
=2�N�SO

− �with N being an integer� and becomes maximal
for L= �2N+1���SO

− . The profile described by Eq. �34� arises
due to an excitation of the spin-helix modes s5,6 under the
EDSR conditions. The spatial oscillations of these modes
have the same “magic” wave number �=1 /�SO

− as the static
persistent spin helix.22,33 However, whereas the persistent
spin helix is time independent, the spin profiles in Eqs. �33�
and �34� oscillate also in time at each point r1 with the fre-
quency �0 of the applied electric field. �The explicit time
dependence, e.g., S�r1 , t��sin�r1 /�SO

− +�0t� for L= �2N
+1���SO

− and for E�t�=E0 cos��0t�, is obtained by inverse
Fourier transform of Eqs. �33� and �34�.�. This driven spin
helix is a generalization of a static spin-helix structure to the
time-dependent case.

Spatial quantization due to the Hall-bar boundaries, more-
over, leads to further enhancement of the amplitude of the
spin-helix modes in the EDSR regime. The amplitude ��
+�� / ����+���2+2��res� is infinite for �=−� in a model with
strictly linear SOI, i.e., for �res=0, but is regularized by the
next-to-leading order effects due to cubic Dresselhaus and
extrinsic SOIs, giving rise to a finite linewidth �res.56 Such an
enhancement of the amplitude of the driven spin helix close
to the �=−� point in relatively narrow QWs may be observ-
able, e.g., by optical techniques.2,3

VIII. CONCLUSIONS

In conclusion, we have described several signatures of
electrically induced spin polarization and the spin-Hall effect
due to linear spin-orbit interactions. We have shown that the
spin-Hall effect and edge spin accumulation—while being
absent for dc electric fields—becomes finite for time-
dependent electric fields. In particular, we have found that
boundary effects can extend over the whole sample due to
driven spin-helix modes for the case of the linear Rashba and
Dresselhaus spin-orbit interaction being of equal strengths.
The amplitude of these helix modes as a function of the
spin-orbit interaction strengths is strongly enhanced due to
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FIG. 5. Polarization in the EDSR geometry E ,B �y for case
shown in Fig. 1�a� with Sb=0.02 �m−2. Upper panel: Im S3

�x=20l� �black� and Im S1�x=20l� �gray curve� are shown as a
function of �L�. Resonance is seen at ��L�=��=10−3. Parameters
of the �001�-grown QW: ��=−0.08, ��=0.1, and L=100l. Lower
Panel: density plot of Re S3�x� and Im S3�x� as a function of x and
�L� /��

2 for the same parameters.
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due spatial quantization under the conditions of electric-
dipole-induced spin resonance.
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APPENDIX A: SPIN-DIFFUSION EQUATION

We start from the impurity averaged Kubo formula �for
EF��1� for the spin density

Si(r) =

⎡
⎢⎣ +

⎤
⎥⎦ e

2π
Ej(ω)

=
e

2π

∫
d2x′

[
δiνδ(r − x′)

+

∫
d2x2mτX iµ(r,x)Dµν (x,x′)

]
γν(x′) ,

�A1�
where solid lines denote impurity averaged Green’s functions
GE

R/A and dashed lines denote correlators of impurity
potential.39,49,57 The first term of Eq. �A1� is the “bubble”
diagram ���r�=tr��r
��GEF+�

R v̂ jGEF

A 
r��Ej���, i.e., a spin re-
sponse to the electric field in the absence of vertex correc-
tions. The latter are described the diffusion D���r ,x�, which
is defined by the integral equation

D���r,x�� =

��
�r − x��

2m�
+
 d2yX���r,y�D���y,x�� ,

�A2�

where X�� is given by Eq. �6�. Iterating Eq. �A1� once with
the help of Eq. �A2�, we find

Si�r� =
e

2�
�2m��
 d2x�Di��r,x�����x�� . �A3�

Multiplying Eq. �A2� by e
2�2m����x�� and integrating over

x�, we obtain the integral equation for the spin density

Si�r� =
e

2�
�i�r� +
 d2xXi��r,x�S��x� , �A4�

which can be further simplified by partially evaluating the
bubble term �i�r� in Eq. �A4�. We define the spin-momentum
correlation functions39

Y�j�r� =
 d2x

2m�
tr���GR�r,x�

− i�

m � xj
GA�x,r�� �A5�

Yb
�j = −


�j

1 − i��
	 − �1 + i���
�j , �A6�

where Eq. �A6� is obtained by evaluating Eq. �A5� using the
bulk Green’s functions of an infinite sample. Inserting the
definition of the velocity operator v̂ j =

p̂j

m +
kj�
k, we obtain

�e /2���i�r�=−�d2xXik�r ,x�Sb
k +2m��e /2��Yij�r�Ej. We can

rewrite Eq. �A4� as

Si�r� − Sb
i = i��Sb

i +
 d2xXij�r,x��Sj�x� − Sb
j �

+ �Y�r� − Yb�ij2�eEj� . �A7�

From now on, we treat the regions close to the boundary and
in the bulk separately. In the bulk, one obviously has �Y�r�
−Yb�=0 and arrives thus at Eq. �5�. At the boundary, the
Green’s functions G0

R/A=Gb,0
R/A−Gb,0

�R/A constructed in Sec. V
have to be used to evaluate �i�r�, Y���r�. Neglecting terms
oscillating with a period of 1 / pF, as described in Sec. IV, one
finds that Yij�r�Ej =Yb

ijEj to linear order in the SOI. There-
fore, the last term in Eq. �A7� vanishes. Consequently, Eq.
�A7� turns into Eq. �5� and can be used for the derivation of
both the bulk diffusion equation and the boundary condi-
tions.

APPENDIX B: BOUNDARY CONDITIONS

For the coefficients B and C in Eq. �16� describing a
boundary with normal vector n̂, we found


B���n̂� � �B − 1��� = −
2

�
2pF��m�n��m��, �B1�

Cj
���n̂� =

2

�

��ln̂ · e j , �B2�

where we neglected terms proportional to ��	1. We define
a 6�6 matrix

M = ��
B�n̂� + �1C�n̂��s1,0e�1r
r=0 �
B�n̂� + �2C�n̂��s2,0e�2r
r=0 ¯ �
B�n̂� + �6C�n̂��s6,0e�6r
r=0

�
B�− n̂� + �1C�− n̂��s1,0e�1r
r=L �
B�− n̂� + �2C�− n̂��s2,0e�2r
r=L ¯ �
B�− n̂� + �6C�− n̂��s6,0e�6r
r=L
� �B3�

and a vector A= �A0 ,AL�, where A0,L=
B��n̂��S�−Sb�. Inserting the general solution S=S�+cks0,ke
�kr1 into Eq. �16�, the BCs

can be rewritten as Mc=−A.
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